

DPP – 2 (Current Electricity)

ttps://physicsaholics.com/	home/courseDetails/55
t۱	tps://physicsaholics.com/

Video Solution on YouTube:- https://youtu.be/sNIx07gM4Z4

Written Solution on Website: https://physicsaholics.com/note/notesDetalis/52

Q 1. A rectangular metal block has dimensions 3cm × 1cm × 1cm. The ratio of the resistance measured between the two opposite rectangular faces to that measured between the two square faces of the block is:

(a) 1:3

(b) 1:9

(c) 3:1

(d) 9:1

Q 2. The resistance of a wire of uniform diameter d and length L is R. The resistance of another wire of the same material but diameter 2d and length 4L will be:

(a) 2R

(b) R

(c) R/2

(d) R/8

Q 3. The resistance of a wire of length 300m and cross-section area $1.0 \, mm^2$ made of material of resistivity $1.0 \times 10^{-7} \Omega \text{m}$ is:

(a) 2Ω

 $(b)3\Omega$

(c) 20Ω

(d) 30Ω

Q 4. Calculate the resistivity of the material of a wire 1 m long, 0.4 mm in diameter and having a resistance 2Ω :

(a) $300 \Omega m$

(b) $2.51 \times 10^{-7} \Omega m$

(c) $2 \times 10^7 \Omega m$

(d) $1 \times 10^{-15} \,\Omega m$

Q 5. A wire has a resistance of 10 ohm. Its resistance if it is stretched by one-tenth of its original length is:

(a) 12.1Ω

(b) 7.9Ω

(c) 11Ω

(d) 9Ω

- Q 6. A wire of 10Ω resistance is stretched to thrice its original length. What will be its new resistivity:
 - (a) Three times of initial resistivity
 - (b) one-third of initial resistivity
 - (c) Equal to initial resistivity
 - (d) None of these
- Q 7. If n, e, τ and m respectively represent the density, charge relaxation time and mass of the electron, then the resistance of a wire of length l and area of cross-section A will be:

(a) $\frac{ml}{ne^2\tau A}$

(b) $\frac{m\tau^2 A}{ne^2 l}$

hysicsaholics

(c)	$ne^2 \tau A$	
	2ml	

$$(d) \frac{ne^2A}{2m\tau l}$$

- Q 8. On increasing the temperature of a conductor, its resistance increases because:
 - (a) Relaxation time decreases
 - (b) Mass of the electrons increases
 - (c) Electron density decreases
 - (d) None of the above
- Q 9. The resistance of a wire is 5 ohm at 50 °C and 6 ohm at 100 °C. The resistance of the wire at 0 °C will be:
 - (a) 1 ohm

(b) 2 ohm

(c) 3 ohm

- (d) 4 ohm
- Q 10. The resistance of a semiconductor material (germanium or silicon) with rise in temperature.
 - (a) increases

- (b) decreases
- (c) Remains the same
- (d) first increases then decreases
- Q 11. A nichrome wire of length 100cm and radius 0.36 mm has a resistance of 1.5 ohm. Calculate the conductivity of nichrome (in mho):
 - (a) 1.6×10^6
- (b) 16×10^6
- (c) 1.6×10^5
- (d) 1.6×10^7

Q.1 b	Q.2 b	Q.3 d	Q.4 b	Q.5 a
Q.6 c	Q.7 a	Q.8 a	Q.9 d	Q.10 b
Q.11 a			•	